Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

catena-Poly[[[aqua(1,10-phenanthroline)-copper(II)]- μ-isophthalato] N, N-dimethylformamide solvate monohydrate]

Hong-Ping Xiao,* Xin-Hua Li and Mao-Lin Hu

Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou, 325027, People's Republic of China

Correspondence e-mail: hp_xiao@wznc.zj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.117$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title complex, $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\right.$-$\left.\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the Cu atom is surrounded by two O atoms from two isophthalate dianions, an aqua O atom and two N atoms from a phenanthroline heterocycle in a distorted square-pyramidal geometry. The isophthalate dianion functions as a bridge between two Cu atoms and generates a onedimensional zigzag chain coordination polymer.

Comment

Among the metal complexes of terephthalic acid $\left(\mathrm{H}_{2} \mathrm{ta}\right)$ and its derivatives (Cano et al., 1997; Liu et al., 2004; Otto \& Wheeler, 2001; Tan et al., 1997), the copper-phenanthroline (phen) system has been well studied and displays a diversity of structures; examples include two dimeric complexes, $\left[\mathrm{Cu}_{2}(\right.$ ta) $\left.)(\text { phen })_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2}(\right.$ ta $\left.)(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, and three polymeric complexes, $[\mathrm{Cu}(\mathrm{ta})(\mathrm{phen})]$, $[\mathrm{Cu}(\mathrm{ta})(\mathrm{phen})-$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ and $\left[\mathrm{Cu}(\mathrm{ta})(\mathrm{phen})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot$ DMF (Sun et al., 2000, 2001; Xiao et al., 2004; Zhu et al., 2004). The title compound, $\left[\mathrm{Cu}(\mathrm{phen})(\mathrm{phth})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{DMF}$, (I), where terephthalic acid is replaced by isophthalic acid (H_{2} phth), is a onedimensional zigzag chain coordination polymer.

In (I), the Cu atom is surrounded by two O atoms from two isophthalate dianions, an aqua O atom and two N atoms from a phenanthroline heterocycle in a distorted square-pyramidal geometry (Fig. 1). The apical position is occupied by the aqua O atom, the corresponding axial bond distance [2.309 (2) \AA] being longer than the two equatorial $\mathrm{Cu}-\mathrm{O}$ (carboxylate) bonds distances [1.940 (2) \AA and 1.965 (2) \AA]. The isophthalate dianion functions as a bridge between two Cu atoms in a bis-monodentate coordination mode. The 1,10-phenanthroline acts as a chelate ligand. A one-dimensional zigzag chain is formed by the $\mathrm{Cu}^{\mathrm{II}}$ cations, the μ_{2}-bridging isophthalate dianions, the aqua molecules and the terminal 1,10 -phenanthroline ligands (Fig. 2), which is similar to the structure of the complex, $\left[\mathrm{Cu}(\mathrm{phen})(\mathrm{ta})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{DMF}(\mathrm{Zhu}$ et al., 2004).

Received 11 March 2004 Accepted 22 March 2004 Online 27 March 2004

Figure 1
The asymmetric unit of (I), together with the symmetry-related coordinated isophthalate ligand. The independent non-H atoms are labelled, and displacement ellipsoids are drawn at the 50% probability level.

Figure 2
View of the one-dimensional zigzag chain in (I). H atoms have been omitted.

Figure 3
View of the two-dimensional hydrogen-bonding network in (I). The 1,10phenanthroline ligands, the DMF and water solvent molecules, and H atoms have been omitted for clarity.

An O5-H5B $\cdots \mathrm{O}^{i}{ }^{i}$ [symmetry code: (i) $\left.x+1, y, z\right]$ intermolecular hydrogen bond is formed between neighbouring one-dimensional zigzag chains, resulting in a two-dimensional network (Fig. 3). Moreover, there are $\pi-\pi$ interactions of the 1,10-phenanthroline heterocycle belonging to adjacent zigzag chains. This leads from a two-dimensional network to a three-
dimensional network with cavities. The DMF and water solvent molecules are embedded in the cavities.

Experimental

A solution (10 ml) of dimethylformamide containing $\mathrm{Cu}_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($0.5 \mathrm{~mol}, 0.085 \mathrm{~g}$) and isophthalatic acid ($0.5 \mathrm{mmol}, 0.083 \mathrm{~g}$) was added slowly to a solution (10 ml) of dimethylformamide containing 1,10-phenanthroline ($0.5 \mathrm{mmol}, 0.099 \mathrm{~g}$). The mixture was stirred for a few minutes and left to stand at room temperature for about four months, after which time blue crystals were obtained.

Crystal data

```
\(\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\).-
    \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO} \cdot \mathrm{H}_{2} \mathrm{O}\)
\(M_{r}=516.98\)
Monoclinic, \(P 2_{\mathrm{d}} / c\)
\(a=6.9009\) (2) А
\(b=31.1833\) (9) \(\AA\)
\(c=10.7808\) (3) \(\AA\)
\(\beta=98.312(1)^{\circ}\)
\(V=2295.58(11) \AA^{\circ}\)
\(V=2295.58(11) \AA^{3}\)
\(Z=4\)
```

$D_{x}=1.496 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 654
reflections
$\theta=2.4-23.0^{\circ}$
$\mu=1.00 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, blue
$0.45 \times 0.38 \times 0.27 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min }=0.635, T_{\text {max }}=0.764$
11975 measured reflections

Refinement

Refinement on F^{2}
4037 independent reflections
3652 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-36 \rightarrow 27$
$l=-12 \rightarrow 12$

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.07 P)^{2}\right.
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.117$
$S=1.08$
4037 reflections
311 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& +1.5778 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.81 \mathrm{e}^{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\min }=-0.74 \mathrm{e}^{\circ} \AA^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0009 (2)

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$1.9400(18)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.029(2)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9650(18)$	$\mathrm{Cu} 1-\mathrm{O} 5$	$2.309(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.006(2)$		
O3 $^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1$	$89.04(8)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$81.35(8)$
O3 $^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$166.23(9)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 5$	$95.77(8)$
$\mathrm{O}_{1}-\mathrm{Cu} 1-\mathrm{N} 1$	$95.67(8)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$98.81(8)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 2$	$92.25(9)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$96.28(8)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$171.98(8)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 5$	$88.93(8)$

Symmetry code: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H7C \cdots O6	0.82 (6)	2.14 (7)	2.876 (5)	151 (10)
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.82 (6)	2.12 (6)	2.926 (4)	172 (10)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.82	2.13	2.825 (3)	143
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{O}^{\text {i }}$	0.82	2.03	2.691 (3)	137

Symmetry codes: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $1+x, y, z$.

metal-organic papers

H atoms attached to the C atoms were included in the refinement in calculated positions in the riding-model approximation $[\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The water H atoms were located and refined with distance restraints $[\mathrm{O}-\mathrm{H}=0.82(1) \AA$ and $\mathrm{H} \cdots \mathrm{H}=$ 1.39 (1) $\left.\AA ; U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})\right]$.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Wenzhou S\&T Project of China (No. S2003A008) and the Zhejiang Provincial Natural Science Foundation of China (No. 202137).

References

Bruker (2000). SMART (Version 5.618), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Cano, J., Munno, G. D., Sanz, J. L., Ruiz, R., Faus, J., Lloret, F., Julve, M., \& Caneschi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 1915-1923.
Liu, Z. L., Zhang, D. Q., Liu, C. M. \& Zhu, D. B. (2004). Chem. Lett. 33, 180181.

Otto, T. J. \& Wheeler, K. A. (2001). Acta Cryst. C57, 704-705.
Sun, D. F., Cao, R., Liang, Y. C., Hong, M. C., Su, W. P. \& Weng, J. B. (2000). Acta Cryst. C56, e240-e241.
Sun, D. F., Cao, R., Liang, Y. C., Shi, Q., Su, W. P. \& Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335-2340.
Tan, X. S., Sun, J., Xiang, D. F. \& Tang, W. X. (1997). Inorg. Chim. Acta, 255, 157-161.
Xiao, H. P., Li, X. H., Ye, M. D. \& Hu, M. L. (2004). Acta Cryst. E60, m253m254.
Zhu, L. G., Xiao, H. P. \& Lu, J. Y. (2004). Inorg. Chem. Commun. 7, 94-96.

