metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Ping Xiao,* Xin-Hua Li and Mao-Lin Hu

Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou, 325027, People's Republic of China

Correspondence e-mail: hp_xiao@wznc.zj.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.039 wR factor = 0.117 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[aqua(1,10-phenanthroline)copper(II)]- μ -isophthalato] *N*,*N*-dimethylformamide solvate monohydrate]

In the title complex, $\{[Cu(C_8H_4O_4)(C_{12}H_8N_2)(H_2O)] \cdot C_3H_7NO \cdot H_2O\}_n$, the Cu atom is surrounded by two O atoms from two isophthalate dianions, an aqua O atom and two N atoms from a phenanthroline heterocycle in a distorted square-pyramidal geometry. The isophthalate dianion functions as a bridge between two Cu atoms and generates a one-dimensional zigzag chain coordination polymer.

Received 11 March 2004 Accepted 22 March 2004 Online 27 March 2004

Comment

Among the metal complexes of terephthalic acid (H₂ta) and its derivatives (Cano *et al.*, 1997; Liu *et al.*, 2004; Otto & Wheeler, 2001; Tan *et al.*, 1997), the copper–phenanthroline (phen) system has been well studied and displays a diversity of structures; examples include two dimeric complexes, $[Cu_2(ta)(phen)_4](ClO_4)_2$ and $[Cu_2Cl_2(ta)(phen)_2(H_2O)_2]$, and three polymeric complexes, [Cu(ta)(phen)], $[Cu(ta)(phen)-(H_2O)]$ and $[Cu(ta)(phen)(H_2O)] \cdot H_2O \cdot DMF$ (Sun *et al.*, 2000, 2001; Xiao *et al.*, 2004; Zhu *et al.*, 2004). The title compound, $[Cu(phen)(phth)(H_2O)] \cdot H_2O \cdot DMF$, (I), where terephthalic acid is replaced by isophthalic acid (H₂phth), is a onedimensional zigzag chain coordination polymer.

In (I), the Cu atom is surrounded by two O atoms from two isophthalate dianions, an aqua O atom and two N atoms from a phenanthroline heterocycle in a distorted square-pyramidal geometry (Fig. 1). The apical position is occupied by the aqua O atom, the corresponding axial bond distance [2.309 (2) Å] being longer than the two equatorial Cu–O(carboxylate) bonds distances [1.940 (2) Å and 1.965 (2) Å]. The isophthalate dianion functions as a bridge between two Cu atoms in a bis-monodentate coordination mode. The 1,10-phenanthroline acts as a chelate ligand. A one-dimensional zigzag chain is formed by the Cu^{II} cations, the μ_2 -bridging isophthalate dianions, the aqua molecules and the terminal 1,10-phenanthroline ligands (Fig. 2), which is similar to the structure of the complex, [Cu(phen)(ta)(H₂O)]·H₂O·DMF (Zhu *et al.*, 2004).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

4037 independent reflections 3652 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.07P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Extinction coefficient: 0.0009 (2)

+ 1.5778P

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.81 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.74 \ {\rm e} \ {\rm \AA}^{-3}$

 $R_{\rm int} = 0.020$

 $\theta_{\rm max} = 25.0^{\circ}$ $h = -8 \rightarrow 8$

 $k = -36 \rightarrow 27$

 $l = -12 \rightarrow 12$

Figure 1

The asymmetric unit of (I), together with the symmetry-related coordinated isophthalate ligand. The independent non-H atoms are labelled, and displacement ellipsoids are drawn at the 50% probability level.

Figure 2

View of the one-dimensional zigzag chain in (I). H atoms have been omitted.

Figure 3

View of the two-dimensional hydrogen-bonding network in (I). The 1,10phenanthroline ligands, the DMF and water solvent molecules, and H atoms have been omitted for clarity.

An O5-H5B···O2ⁱ [symmetry code: (i) x + 1, y, z] intermolecular hydrogen bond is formed between neighbouring one-dimensional zigzag chains, resulting in a two-dimensional network (Fig. 3). Moreover, there are $\pi - \pi$ interactions of the 1,10-phenanthroline heterocycle belonging to adjacent zigzag chains. This leads from a two-dimensional network to a threedimensional network with cavities. The DMF and water solvent molecules are embedded in the cavities.

Experimental

A solution (10 ml) of dimethylformamide containing Cu₂Cl₂·2H₂O (0.5 mol, 0.085 g) and isophthalatic acid (0.5 mmol, 0.083 g) was added slowly to a solution (10 ml) of dimethylformamide containing 1,10-phenanthroline (0.5 mmol, 0.099 g). The mixture was stirred for a few minutes and left to stand at room temperature for about four months, after which time blue crystals were obtained.

Crystal data

$[Cu(C_8H_4O_4)(C_{12}H_8N_2)(H_2O)]$	$D_x = 1.496 \text{ Mg m}^{-3}$
C ₃ H ₇ NO·H ₂ O	Mo $K\alpha$ radiation
$M_r = 516.98$	Cell parameters from 654
Monoclinic, $P2_1/c$	reflections
a = 6.9009 (2) Å	$\theta = 2.4 - 23.0^{\circ}$
b = 31.1833 (9) Å	$\mu = 1.00 \text{ mm}^{-1}$
c = 10.7808 (3) Å	T = 293 (2) K
$\beta = 98.312 \ (1)^{\circ}$	Prism, blue
$V = 2295.58 (11) \text{ Å}^3$	$0.45 \times 0.38 \times 0.27 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\rm min}=0.635,\ T_{\rm max}=0.764$ 11975 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.117$ S = 1.084037 reflections 311 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Cu1-O3 ⁱ	1.9400 (18) Cu1-N2		2.029 (2)
Cu1-O1	1.9650 (18)	Cu1-O5	2.309 (2)
Cu1-N1	2.006 (2)		
O3 ⁱ -Cu1-O1	89.04 (8)	N1-Cu1-N2	81.35 (8)
O3 ⁱ -Cu1-N1	166.23 (9)	$O3^i - Cu1 - O5$	95.77 (8)
O1-Cu1-N1	95.67 (8)	O1-Cu1-O5	98.81 (8)
$O3^i - Cu1 - N2$	92.25 (9)	N1-Cu1-O5	96.28 (8)
O1-Cu1-N2	171.98 (8)	N2-Cu1-O5	88.93 (8)
6	3 1		

Symmetry code: (i) $x, \frac{3}{2} - y, z - \frac{1}{2}$

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O7−H7C···O6	0.82 (6)	2.14 (7)	2.876 (5)	151 (10)
$O7 - H7B \cdot \cdot \cdot O2^{ii}$	0.82 (6)	2.12 (6)	2.926 (4)	172 (10)
$O5-H5B\cdots O2^{ii}$	0.82	2.13	2.825 (3)	143
$O5-H5C\cdots O4^{i}$	0.82	2.03	2.691 (3)	137

Symmetry codes: (i) $x, \frac{3}{2} - y, z - \frac{1}{2}$; (ii) 1 + x, y, z.

H atoms attached to the C atoms were included in the refinement in calculated positions in the riding-model approximation $[C-H = 0.93 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)]$. The water H atoms were located and refined with distance restraints $[O-H = 0.82 (1) \text{ Å} \text{ and } H \cdots H = 1.39 (1) \text{ Å}; U_{iso}(H) = 1.2U_{eq}(O)]$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Wenzhou S&T Project of China (No. S2003A008) and the Zhejiang Provincial Natural Science Foundation of China (No. 202137).

References

- Bruker (2000). SMART (Version 5.618), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cano, J., Munno, G. D., Sanz, J. L., Ruiz, R., Faus, J., Lloret, F., Julve, M., & Caneschi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 1915–1923.
- Liu, Z. L., Zhang, D. Q., Liu, C. M. & Zhu, D. B. (2004). Chem. Lett. 33, 180– 181.
- Otto, T. J. & Wheeler, K. A. (2001). Acta Cryst. C57, 704-705.
- Sun, D. F., Cao, R., Liang, Y. C., Hong, M. C., Su, W. P. & Weng, J. B. (2000). Acta Cryst. C56, e240-e241.
- Sun, D. F., Cao, R., Liang, Y. C., Shi, Q., Su, W. P. & Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335–2340.
- Tan, X. S., Sun, J., Xiang, D. F. & Tang, W. X. (1997). Inorg. Chim. Acta, 255, 157–161.
- Xiao, H. P., Li, X. H., Ye, M. D. & Hu, M. L. (2004). Acta Cryst. E60, m253– m254.
- Zhu, L. G., Xiao, H. P. & Lu, J. Y. (2004). Inorg. Chem. Commun. 7, 94-96.